
Centralized Multi-agent Visual SLAM
Team 19 Final report for EECS568 / ROB530 Winter22

Github repository: Multi-Agent-Visual-SLAM

Rui Chen
University of Michigan

Ann Arbor, USA
ruiche@umich.edu

Goro Yeh
University of Michigan

Ann Arbor, USA
goroyeh@umich.edu

Hao Chen
University of Michigan

Ann Arbor, USA
haochern@umich.edu

Akshay Tondak
University of Michigan

Ann Arbor, USA
akshayt@umich.edu

Simeng Zhao
University of Michigan

Ann Arbor, USA
zsimeng@umich.edu

Abstract—Multi-agent SLAM has been an active area of study
in the recent years with a lot of classical SLAM techniques
saturating in the achievable localization accuracy. Through this
paper, we implement a novel collaborative SLAM based on
centralized communication network, with every robot running
ORB SLAM2. We construct modules from scratch for robot
simulations and also make attempts towards improving the
overall performance of the system. Finally we compare the
running time between single robot and multi-robot mapping and
propose a multi-agent robot system for a faster and more accurate
environment mapping.

Index Terms—Centralized collaboration frame, ORB SLAM2,
pose graph, point cloud, occupancy grid, semantic segmentation

I. INTRODUCTION

The constant demand for improving accuracy and speed
for SLAM systems has continuously motivated researchers
to find new solutions. While the research on single agent
SLAM has reached unprecedented heights, there are unavoid-
able drawbacks in dynamics and algorithms for single robot,
and for certain scenarios that need cooperation. Cooperative
SLAM using multiple robots can break through some of the
bottlenecks that single agent SLAM might not be able to. It can
shorten the time in performing global SLAM, it can improve
loop closure accuracy to consequently improve the accuracy
of SLAM, oftentimes inheriting the existing research results
for single robot SLAM.

In this paper we describe our centralized multi-agent visual
SLAM in ROS simulation framework. We discuss the perfor-
mance and future improvements pertaining to this technique.
In implementation, Each robot runs modified ORB SLAM2,
a monocular visual SLAM framework that takes in sensor
image information and then applies g2o to do pose graph
optimization.

II. RELATED WORK AND BACKGROUNDS

A. ORB SLAM2

The front-end visual odometry is mainly used to estimate
the relative motion parameters of the camera between frames,
so as to indirectly infer the motion of the robot in this period
of time and cumulatively estimate the structure of the envi-
ronment. However, VO itself will naturally have cumulative
errors, which makes back-end optimization and loop detection
very important. The pose state information measured by the
back-end VO and the loop detection information are used to
process the noise generated in the SLAM process by using,
for example, filtering or nonlinear optimization algorithms to
achieve the purpose of optimization, so as to obtain the global
map.

ORB SLAM has produced three generations so far. [1]
envisioned the first ORB SLAM which had the following novel
features which also continued to the ORB SLAM 2:

• Fast, real time operation using the covisibility graph.
• Allowed wide baseline and real time loop-closing.
• Performed Bundle Adjustment for accuracy.

It is, to the date, most popular baseline visual SLAM frame-
work which motivated us to use its second version to imple-
ment the underlying SLAM for our setup. A monocular SLAM
system based on orb feature recognition and running in real
time naturally inherits the classic visual SLAM basic frame-
work: reading sensor information (camera image information
or LIDAR point cloud PCD) + visual odometry + optimization
+ loop closing + mapping.

ORB SLAM3 [2] recently has further improved on the
earlier versions in terms of speed of SLAM. The authors claim
a speedup of 2 to 5 times and also utilize information from
all the past ORB inputs and not just the last couple of frames.
Since this is a fairly new research, we did not use it as our

https://github.com/UMMobileRoboticsT19/Multi-Agent-Visual-SLAM

Fig. 1: ROS Node graph of the pipeline

method of doing SLAM but as future work, we can utilize the
third version to examine if a higher speedup can be achieved.

B. Collaborative SLAM solutions and communication network

Robots can improve the robustness of the system by es-
tablishing a reasonable communication mechanism to perform
tasks that can not be performed by a single robot. However,
it should be noted that although the structure of each robot in
the multi robot system is different, and the sensing equipment
may be different, the multi-machine SLAM is not the same
as the multi-sensor fusion SLAM. The latter refers more to
research based on single robot.

So far, the core problem of multi machine SLAM is still how
to combine the information captured by multiple robot agents
to build a single global map, and how to solve the accurate
positioning and information transmission between agents in
mobile. A natural idea is to allow agents to share information,
especially the information collected by the agent’s historical
visiting environment, which is also the strategy adopted by
many effective multi machine SLAM frameworks.

One of the earlier accepted collaborative SLAM technique
termed C2TAM ([4]) differs from our approach in the way
that it captures and sends the key-frames on the front-end
robot and sends them to the central server for calculations.
On the contrary, our approach runs active SLAM individually
on the robots and sends their versions of the global map.
MOARSLAM [5] is somewhat similar to our approach in
the sense that it also runs a whole visual SLAM technique
individually on the robots and sends back the local maps. As

for the communication relationship between robots in multi
machine SLAM, the most basic classification can be divided
into centralized and fully distributed. CVI-SLAM ([6]) is
the most recent and accepted approach to centralized Visual
SLAM which performs loop closures and map fusion in the
backend. Centralized means that an agent plays the role of
server, this kind of system either relies on centralized or offline
processing, or tries to keep most robots within the communica-
tion range all the time. And fully distributed means that each
agent shares information with each other and has the same
status. here sensor data required by SLAM is distributed on
the robot, and the original communication data is difficult to be
transmitted in the way we want due to bandwidth constraints or
limited communication range.Now there is a communication
mode combining two ideas, namely hybrid. Any exchange
of key frame and map point position information between
server and agent uses relative coordinates instead of absolute
coordinates, because the exchange of absolute attitude may
lead to the inconsistency between the newly transmitted key
frame and the optimized map in the optimization process.
When the global BA is running, pose info sometimes cannot
be passed into the server map, because the data in the input
buffer will not be corrected through the optimization steps,
the absolute coordinates of the data will no longer match the
back-end optimized map.

In terms of the relationship between agents in multi machine
cooperation, whether distributed or centralized, many scien-
tific research teams are trying corresponding countermeasures.
Generally speaking, the implementation of centralized is rela-

Fig. 2: ORB SLAM2 system pipeline (Image credits : [3])

tively less difficult and the results are richer than distributed.
However, with the deepening of distributed optimization the-
ory, the obvious advantages of distributed system also urge
more researchers to make in-depth exploration. In addition,
how to optimize communication is also a hot research field.
How to reduce data transmission and how to ensure the
stability of individual tasks in the case of communication
disconnection in some areas? How to deal with the backlog of
information after communication recovery... These problems
are the key to multi machine collaborative SLAM and other
collaborative tasks, but only a few systems can solve them.

III. METHODOLOGY AND PIPELINE

Fig. 3: Pipeline of the simulation

In our simulation, the RGBD images will be generated
from gazebo indoor environment from the perspective of the
robot, for different robots, we arrange different name space
for them, so we can distinguish them while subscribing. As
the robot’s remote velocity controllers are sending linear and
angular velocity command to the corresponding robot with
same name space, the robot will move and the changing RGBD
images will keep be subscribed by each robot’s Modified

ORB SLAM2 system and be converted to point cloud data.
Then here we will process the data in two different ways: in
the first branch we compress the point cloud into occupancy
grid map, which is preferred by mobile robotics; in the second
branch, we do semantic segmentation to the point cloud.

IV. IMPLEMENTATION

A. Simulation configuration

• Indoor environment: a museum model from solidworks
• Car model: include kinematics and urdf
• separate remote velocity controller for every robot
• April-tags are placed inside the museum which will help

robots to localize and confirm their relative pose when
they detect the tags whose positions are unknown to them.

Fig. 4: indoor environment car model and controller in ROS

B. Modyfication on ORB SLAM2

The major modification on ORB SLAM2 is about real-
time dense 3d point cloud, the original ORB SLAM2 only
have sparse point cloud from map points and some stable
ORB features, we adopt 3d reconstruction algorithm to make
and store 3d dense point cloud in real time. ORB SLAM2
is divided into three threads: map construction, tracking and
closed-loop detection. The three threads are carried out sep-
arately. The tracking thread first extracts the orb features
of the input continuous images, estimates the detailed pose

information, and then optimizes the pose, and uses the adjacent
points to find more feature matching to optimize the pose
and select the key frame. Map construction is to update the
image information by adding key frames, generate the newly
added map points after verification, and make necessary local
adjustments when necessary. The main function of close loop
detection thread is to select similar frames and detect the
closed-loop by judging whether the RGBD info from the
camera is highly similar to the previous historical records.

Fig. 5: real time dense 3d point cloud

Besides, we also make various modification on the interface
and configuration to make the ORB SLAM2 receive the RGB-
D from corresponding robot.

C. Point cloud to Occupancy Grid Map

Actually when the mobile robotics want to to planning,
they usually prefer 2D map, so we also create a ROS node
to subscribe the dense PCD data in real time and compress
or convert them into occupancy grid, then the occupancy grid
map will be published under the same namespace for certain
robot. For example if we run SLAM with 3 robots do the
collaboration, 3 separate dense pcd will be converted to 3
separate occupancy grid, so in rostopic’s list, we will have
3 RGBD image topics, 3 point cloud topics, and 3 matrices.

Fig. 6: converting PCD to occupancy grid in real time

And the algorithm to compress pcd into 2d data is simple:
we know for occupancy grid map, the value of each grid
usually represents the likelihood of being occupied, with 0.5
to be the initial value for unknown status, we will calculate
the number of points within the grid in xy plane, then find
those points which are within valid range of heights because
for mobile robotic with certain height, those points with high
z coordinates will not be the obstacles, only the points with
lower z value will be counted into potential barrier. Then
according to the number, we set threshold below which the

grid will be considered as free or unknown, depending on the
number of all points within the grid from top perspective. It
should be noted that because the point cloud is growing in real
time, the occupancy grid generation algorithm can be seen as
incremental solution rather than batch solution.

D. Semantic segmentation

3D-Bonet is an efficient segmentation algorithm for point
cloud instances based on bounding box regression. The ap-
proximate bounding box regression is realized by minimizing
the correlation cost function, and the final instance segmenta-
tion is realized by point mask prediction. 3D-Bonet achieves
the effect of state of the art on ScanNet and s3dis data sets,
which can be said to be a lightweight neural network for point
cloud semantic segmentation. We just replicate the network
here to do semantic segmentation so we won’t dive into the
details here. The steps of installing virtual environment can be
seen in github link. Here is the visualization of dense PCD.
Because the input format of 3D-Bonet is h5 so we also create
a scripts transforming the PCD here to h5 within ROS.

We also have made some attempts in using the results from

Fig. 7: semantic segmentation based on 3d-Bonet

semantics segmentation to help merge the data.

E. Estimate the Transformation

Although the master node knows the exact initial location of
all robots, each robot doesn’t know the relative pose of other
robots, otherwise the project will be euivalent to single agent
SLAM, therefore except for the accuracy in SLAM for each
robot, estimating the translation between two or more agent
will also be essential to accurate map merging. One of our
solutions is first we get the point clouds of exploring same
area, so the two point cloud should be aligned given correct
translation. So we use RANSAC to exclude the outliers and
then implement ICP to find the matrix.

As illustrated in Figure 14, by translation, the second robot’s
Occupancy Grid Mapping (OGM) is superimposed on the first
robot’s OGM, even though the local maps obtained by the two
robots have significant errors. The x-axis and y-axis represent
the local coordinate in robot1’s frame.

Fig. 8: RANSAC Translation Algorithm

Algorithm 1 RANSAC Translation Algorithm
Input: ArrayWithSize(N,2) XY,XY ′ // [xi, yi], [x

′
i, y

′
i]

Output: MatrixWithSize(3,3) H
Hbest, countbest = None,−1
for trial in range(NUM TRIALS) do

draw [x, y], [x′, y′] from XY,XY ′

H =

1 0 x− x′

0 1 y − y′

0 0 1


XYproj = homography transform(XY,H)
counttemp = sum

(
∥XY ′ −XYproj∥2 < eps

)
if counttemp countbest then
Hbest, countbest ←H, counttemp

end if
end for

F. Merge Occupancy Grid Maps

We created a ROS node to convert two occupancy grid maps
generated from the two robots individually to a single merged
final map. The algorithm we designed is show in algorithm 2

In order to merge two maps to a global final map, we
need to transform each map to the global coordinate frame,
which requires the transformation matrices from different
robots. The mathematical equation of transforming a grid in
robot1’s coordinate frame to the global coordinate frame is in
equation 1. x, y is a grid in robot1’s frame and x’, y’ is the grid
location in the world frame. x0, y0, theta is the initial pose of
robot1 relative to the world frame. Note that to transform a
point from robot1’s frame back to the global frame, we need
to multiply the grid in robot1’s frame by the inverse of the
transformation matrix.

The merge maps process can be referred to figure 9, 10,
and 11 x

y
1

 =

 cos θ − sin θ x0

sin θ cos θ y0
0 0 1

 x′

y′

1

 (1)

Algorithm 2 Merge Maps Algorithm
Input: OccupancyGrid grid1, grid2 // Maps from two robots
Output: OccupancyGrid grid // Final merged map
grid.header ← grid1.header
grid.info← grid1.info
for i← 0 to grid1.data.size do

if grid1.data[i] is not 0.5 and grid2.data[i] is 0.5 then
grid.data[i]← grid1.data[i]

else if grid1.data[i] is 0.5 and grid2.data[i] is not 0.5 then
grid.data[i]← grid2.data[i]

else if grid1.data[i] is 0.5 and grid2.data[i] is 0.5 then
grid.data[i]← 0.5

else
grid.data[i]← (grid1.data[i] + grid2.data[i])/2

end if
end for

(a) /robot1/map (b) /robot2/map

Fig. 9: Maps created by two robots

.

V. RESULTS

The link for presentation and video demo are as follows:
https://www.youtube.com/watch?v=w1nkEfZI4GE

A. Evaluation for SLAM with different number of engaged
agents

In order to evaluate the performance of our multi-agent
SLAM system, we first ran the single robot SLAM of the

(a) /robot1/map (b) /robot2/map

Fig. 10: Maps created by two robots(After transformation to
the same world frame

https://www.youtube.com/watch?v=w1nkEfZI4GE

Fig. 11: The final map after merging two individual maps

whole map and recorded the time consumed. The, we ran our
multi-robot SLAM system and recorded the time used. The
table I below shown the runtime in different scenarios.

TABLE I: Running Time of different tests

Running Time(sec)
Scenarios 1st 2nd 3rd Avg

Single Robot 407 409 406 407
Two Robots 211 208 207 208

Three Robots 167 172 154 160

But on the other hand, due to the cpu and graphics
limitation, the runtime here won’t be accurate, theoretically
speaking, the runtime of N agents’ collaborative SLAM should
only be 1/N times the single agent runime, if we ignore the
extra runtime for the overlap area, so the bias here make sense.

B. Evaluation for merged maps and point clouds

Fig. 12: Test run with 3 robots with merged grid map

Here we run a collaborative SLAM with 3 robots starting
from different origins, we launch 3 different remote velocity

Fig. 13: Real and expected trajectories of 3 robots with merged
grid map

controller to control 3 robots, and 3 RGB-D images with
different name space will be subscribed by 3 corresponding
ORB SLAM2. Just as the figures shows above we published
the real trajectories of each robot to rviz along with their
merged grid map, then we use the transformation to go back
and merge the point cloud data.

Fig. 14: Merged point cloud using same transformation

From the results above we can see both the occupancy grid
map and the point cloud data are not satisfactory. That happens
because the distribution of textures and features varies in
the museum, so the ORB SLAM performs terribly especially
where the textures are not enough. Also in cloud to grid
module, we can have error when count points within valid
range, the boundary is set manually. For example, we want
the area of stairs to be free in occupancy grid because the
car can move freely under the stairs, but in the project, some
points will still be considered as points in occupied area. And
we try to get the depth information of the April tags in robot’s
horizon, the depth value is also not reliable enough.

VI. DISCUSSIONS

The undesirable results and limited application scenarios of
current approach are caused by the following reasons:

• The transformation matrix estimated using RANSAC
assumes that the starting positions of the robots are
relatively close to each other because too many outliers
from a large amount of map data can cause incorrect
fusion.

• Since the Occupancy grid mapping(OGM) is generated
by real-time 3D point cloud projection, its point cloud
information is inaccurate. Since the algorithm does not
synchronize the point clouds updated by ORB SLAM to
OGM, a large number of necessary corrections are lost,
which leads to less satisfactory results.

• In multi-robot collaborative mapping, an individual robot
does not have much chance to perform loop explorations,
so closed-loop detection is rarely triggered to optimize the
recorded paths. Since the robots’ pose-edge graphs are
independent of each other, closed-loop detection across
robots is difficult to achieve, resulting in an accumulation
of errors and large offsets at the map joints.

VII. FUTURE IMPROVEMENT

At present, limited by computing resources, only three
schemes of robot exploration area have been tested at the same
time. However, in our practical application scenarios, such as
disaster rescue, space exploration, etc., more robots are often
used for rapid map construction. Therefore, we hope that in
the future, we will be able to implement collaborative SLAMs
that include more robots, and even map construction based on
robot swarms.

Next, our current approach to merging is overlapping maps
based on the estimated initial relative location while the
internal pose graphs are independent between robots, which
leads to uncontrollable errors at map junctions. In the future,
we hope to modify the pipeline of ORB SLAM so that robots
can identify, register, and synchronize common feature points
among robots, and then use these feature points as edges to
connect independent graphs between robots for loop closure
detection and further online optimization.

In addition, the current data set of our project comes from
the simulation environment, which is different from the data
in the real world. At the same time, there are currently few
datasets suitable for multi-robot SLAM, so in the future, we
hope to use multi-robot field collection data to build a dataset,
and continue to develop our project on this dataset.

Finally, we want to optimize the data storage method. At
present, we also save some log information when producing
maps, which makes the amount of data we store grow rapidly
and makes it difficult for us to generate large-scale maps.
Therefore, we want to optimize map information in the future.
storage method to increase the scale of our stored data.

REFERENCES

[1] R. Mur-Artal, J. Montiel, and J. Tardos, “Orb-slam: a versatile and ac-
curate monocular slam system,” IEEE Transactions on Robotics, vol. 31,
pp. 1147 – 1163, 10 2015.

[2] C. Campos, R. Elvira, J. J. G. Rodriguez, J. M. M. Montiel, and J. D.
Tardos, “Orb-slam3 an accurate open-source library for visual, visual
inertial, and multimap slam,” IEEE Transactions on Robotics, vol. 37,
pp. 1874–1890, dec 2021.

[3] R. Mur-Artal and J. D. Tardos, “ORB-SLAM2: An open-source SLAM
system for monocular, stereo, and RGB-d cameras,” IEEE Transactions
on Robotics, vol. 33, pp. 1255–1262, oct 2017.

[4] L. Riazuelo, J. Civera, and J. Montiel, “C2tam: A cloud framework for
cooperative tracking and mapping,” Robotics and Autonomous Systems,
vol. 62, no. 4, pp. 401–413, 2014.

[5] J. G. Morrison, D. Gálvez-López, and G. Sibley, “Moarslam: Multiple
operator augmented rslam,” in DARS, 2014.

[6] M. Karrer, P. Schmuck, and M. Chli, “Cvi-slam—collaborative visual-
inertial slam,” IEEE Robotics and Automation Letters, vol. 3, no. 4,
pp. 2762–2769, 2018.

	Introduction
	Related Work and backgrounds
	ORB_SLAM2
	Collaborative SLAM solutions and communication network

	Methodology and pipeline
	Implementation
	Simulation configuration
	Modyfication on ORB_SLAM2
	Point cloud to Occupancy Grid Map
	Semantic segmentation
	Estimate the Transformation
	Merge Occupancy Grid Maps

	Results
	Evaluation for SLAM with different number of engaged agents
	Evaluation for merged maps and point clouds

	Discussions
	Future improvement
	References

